The impact of rising sea temperatures on an Arctic top predator, the narwhal.
Sci Rep
; 10(1): 18678, 2020 10 29.
Article
en En
| MEDLINE
| ID: mdl-33122802
Arctic top predators are expected to be impacted by increasing temperatures associated with climate change, but the relationship between increasing sea temperatures and population dynamics of Arctic cetaceans remains largely unexplored. Narwhals (Monodon monoceros) are considered to be among the most sensitive of Arctic endemic marine mammals to climate change due to their limited prey selection, strict migratory patterns and high site fidelity. In the context of climate change, we assume that the population dynamics of narwhals are partly influenced by changes in environmental conditions, with warm areas of increasing sea temperatures having lower abundance of narwhals. Using a unique large dataset of 144 satellite tracked narwhals, sea surface temperature (SST) data spanning 25 years (1993-2018) and narwhal abundance estimates from 17 localities, we (1) assessed the thermal exposure of this species, (2) investigated the SST trends at the summer foraging grounds, and (3) assessed the relationship between SST and abundance of narwhals. We showed a sharp SST increase in Northwest, Mideast and Southeast Greenland, whereas no change could be detected in the Canadian Arctic Archipelago (CAA) and in the Greenland Sea. The rising sea temperatures were correlated with the smallest narwhal abundance observed in the Mideast and Southeast Greenland (< 2000 individuals), where the mean summer sea temperatures were the highest (6.3 °C) compared to the cold waters of the CAA (0.7 °C) that were associated with the largest narwhal populations (> 40,000 individuals). These results support the hypothesis that warming ocean waters will restrict the habitat range of the narwhal, further suggesting that narwhals from Mideast and Southeast Greenland may be under pressure to abandon their traditional habitats due to ocean warming, and consequently either migrate further North or locally go extinct.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Conducta Predatoria
/
Agua de Mar
/
Temperatura
/
Ballenas
/
Cambio Climático
Límite:
Animals
Idioma:
En
Revista:
Sci Rep
Año:
2020
Tipo del documento:
Article
País de afiliación:
Dinamarca
Pais de publicación:
Reino Unido