Combining structural and textural assessments of volumetric FDG-PET uptake in NSCLC.
IEEE Trans Radiat Plasma Med Sci
; 3(4): 421-433, 2019 Jul.
Article
en En
| MEDLINE
| ID: mdl-33134652
Numerous studies have reported the prognostic utility of texture analyses and the effectiveness of radiomics in PET and PET/CT assessment of non-small cell lung cancer (NSCLC). Here we explore the potential, relative to this methodology, of an alternative model-based approach to tumour characterization, which was successfully applied to sarcoma in previous works. The spatial distribution of 3D FDG-PET uptake is evaluated in the spatial referential determined by the best-fitting ellipsoidal pattern, which provides a univariate uptake profile function of the radial position of intratumoral voxels. A group of structural features is extracted from this fit that include two heterogeneity variables and statistical summaries of local metabolic gradients. We demonstrate that these variables capture aspects of tumour metabolism that are separate to those described by conventional texture features. Prognostic model selection is performed in terms of a number of classifiers, including stepwise selection of logistic models, LASSO, random forests and neural networks with respect to two-year survival status. Our results for a cohort of 93 NSCLC patients show that structural variables have significant prognostic potential, and that they may be used in conjunction with texture features in a traditional radiomics sense, towards improved baseline multivariate models of patient overall survival. The statistical significance of these models also demonstrates the relevance of these machine learning classifiers for prognostic variable selection.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
IEEE Trans Radiat Plasma Med Sci
Año:
2019
Tipo del documento:
Article
País de afiliación:
Irlanda
Pais de publicación:
Estados Unidos