Your browser doesn't support javascript.
loading
Sustainable liquid supports for laccase immobilization and reuse: Degradation of dyes in aqueous biphasic systems.
Ferreira, Ana M; Valente, Ana I; Castro, Leonor S; Coutinho, João A P; Freire, Mara G; Tavares, Ana P M.
Afiliación
  • Ferreira AM; Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
  • Valente AI; Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
  • Castro LS; Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
  • Coutinho JAP; Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
  • Freire MG; Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
  • Tavares APM; Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
Biotechnol Bioeng ; 118(7): 2514-2523, 2021 07.
Article en En | MEDLINE | ID: mdl-33764496
ABSTRACT
Novel liquid supports for enzyme immobilization and reuse based on aqueous biphasic systems (ABS) constituted by cholinium-based ionic liquids (ILs) and polymers for the degradation of dyes are here proposed. The biocatalytic reaction for dye decolorization using laccase occured in the biphasic medium, with the enzyme being "supported" in the IL-rich phase and the dye and degradation products being enriched in the polymer-rich phase. An initial screening of the laccase activity in aqueous solutions of ABS constituents, namely cholinium dihydrogen citrate ([Ch][DHC]), cholinium dihydrogen phosphate ([Ch][DHP]), cholinium acetate ([Ch][Acet]), polypropylene glycol 400 (PPG 400), polyethylene glycol 400 (PEG 400) and K2 HPO4 was carried out. Compared to the buffered control, a relative laccase activity of up to 170%, 257%, and 530% was observed with PEG 400, [Ch][DHP], and [Ch][DHC], respectively. These ABS constituents were then investigated for the in situ enzymatic biodegradation of the Remazol Brilliant Blue R (RBBR) dye. At the optimized conditions, the ABS constituted by PPG 400 at 46 wt% and [Ch][DHC] at 16 wt% leads to the complete degradation of the RBBR dye, further maintaining the enzyme activity. This ABS also allows an easy immobilization, recovery, and reuse of the biocatalyst for six consecutive reaction cycles, achieving a degradation yield of the dye of 96% in the last cycle. In summary, if properly designed, high enzymatic activities and reaction yields are obtained with ABS as liquid supports, while simultaneously overcoming the safety and environmental concerns of conventional organic solvents used in liquid-liquid heterogeneous reactions, thus representing more sustainable biocatalytic processes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polyporaceae / Proteínas Fúngicas / Lacasa / Colorantes / Enzimas Inmovilizadas Idioma: En Revista: Biotechnol Bioeng Año: 2021 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polyporaceae / Proteínas Fúngicas / Lacasa / Colorantes / Enzimas Inmovilizadas Idioma: En Revista: Biotechnol Bioeng Año: 2021 Tipo del documento: Article País de afiliación: Portugal