MicroRNA-140-3p alleviates intervertebral disc degeneration via KLF5/N-cadherin/MDM2/Slug axis.
RNA Biol
; 18(12): 2247-2260, 2021 12.
Article
en En
| MEDLINE
| ID: mdl-33904383
MicroRNAs (miRNAs) are associated with healing or deteriorating degenerated intervertebral disc (IVD) tissues in spinal cord diseases, including intervertebral disc degeneration (IDD). IDD represents a chronic process of extracellular matrix destruction, but the relevant molecular mechanisms implicated in the regenerative effects of miRNAs are unclear. Here, we investigated the regenerative effects of microRNA-140 (miR-140-3p) in an IDD model induced by annulus needle puncture. Bioinformatics analysis was conducted to identify regulatory factors (KLF5/N-cadherin/MDM2/Slug) linked to miR-140-3p effects in IDD. Mesenchymal stem cells (MSCs) were extracted from degenerated IVD nucleus pulposus (NP), and the expression of miR-140-3p/KLF5/N-cadherin/MDM2/Slug was manipulated to explore their effects on cell proliferation, migration, apoptosis and differentiation. The results showed that miR-140-3p was under-expressed in the degenerated IVD NP, whereas its overexpression alleviated IDD. Mechanistic studies suggested that miR-140-3p targeted KLF5 expression, and high KLF5 expression impeded the migration and differentiation of MSCs. In degenerated IVD NP-derived MSCs, MiR-140-3p-mediated KLF5 downregulation simultaneously elevated N-cadherin expression and transcriptionally inhibited MDM2, thus upregulating Slug expression. The experimental data indicated that miR-140-3p enhanced the proliferation, migration and differentiation of degenerated IVD NP-derived MSCs and repressed their apoptosis. The in vivo validation experiment also demonstrated that miR-140-3p inhibited IDD by modulating the KLF5/N-cadherin/MDM2/Slug axis. Collectively, our results uncovered the regenerative role of miR-140-3p in IDD via regulation of the KLF5/N-cadherin/MDM2/Slug axis, which could be a potential therapeutic target for IDD.Abbreviations: miR-140-3p: microRNA-140-3p; IDD: intervertebral disc degeneration; MSCs: Mesenchymal stem cells; IVD: intervertebral disc; MSCs: mesenchymal stem cells; KLF5: Kruppel-like factor 5; MDM2: mouse double minute 2; NC: negative control; DHI: disc height index.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Regulación hacia Abajo
/
Biología Computacional
/
MicroARNs
/
Degeneración del Disco Intervertebral
/
Células Madre Mesenquimatosas
Tipo de estudio:
Etiology_studies
/
Prognostic_studies
Límite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
RNA Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Estados Unidos