Your browser doesn't support javascript.
loading
Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways.
Wang, Ying; Zanelotti, Curt J; Wang, Xiaoen; Kerr, Robert; Jin, Liyu; Kan, Wang Hay; Dingemans, Theo J; Forsyth, Maria; Madsen, Louis A.
Afiliación
  • Wang Y; Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
  • Zanelotti CJ; Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
  • Wang X; Institute for Frontier Materials and ARC Centre of Excellent for Electromaterials Science, Deakin University, Geelong, Victoria, Australia.
  • Kerr R; Institute for Frontier Materials and ARC Centre of Excellent for Electromaterials Science, Deakin University, Geelong, Victoria, Australia.
  • Jin L; Institute for Frontier Materials and ARC Centre of Excellent for Electromaterials Science, Deakin University, Geelong, Victoria, Australia.
  • Kan WH; China Spallation Neutron Source, Chinese Academy of Science, Dongguan, China.
  • Dingemans TJ; Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Forsyth M; Institute for Frontier Materials and ARC Centre of Excellent for Electromaterials Science, Deakin University, Geelong, Victoria, Australia.
  • Madsen LA; Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. lmadsen@vt.edu.
Nat Mater ; 20(9): 1255-1263, 2021 Sep.
Article en En | MEDLINE | ID: mdl-33941912
A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with the use of high-energy-density electrodes. We describe molecular ionic composite electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS cm-1 at 25 °C) and electrochemical stability (5.6 V versus Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω cm2) and overpotentials (≤120 mV at 1 mA cm-2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-ion assembly to incorporate an inter-grain network filled with defective LiFSI and LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido