Your browser doesn't support javascript.
loading
Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance.
Cheng, Zhe; Mu, Fengwen; Ji, Xiaoyang; You, Tiangui; Xu, Wenhui; Suga, Tadatomo; Ou, Xin; Cahill, David G; Graham, Samuel.
Afiliación
  • Cheng Z; Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Mu F; Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051, Japan.
  • Ji X; Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • You T; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
  • Xu W; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
  • Suga T; Collaborative Research Center, Meisei University, Hino-shi, Tokyo 191-8506, Japan.
  • Ou X; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
  • Cahill DG; Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Graham S; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces ; 13(27): 31843-31851, 2021 Jul 14.
Article en En | MEDLINE | ID: mdl-34191480
Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for ß-Ga2O3-SiC samples. Both the ß-Ga2O3 thermal conductivity and the buried ß-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 µm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos