Your browser doesn't support javascript.
loading
Naked-eye detection of site-specific ssRNA and ssDNA using PAMmer-assisted CRISPR/Cas9 coupling with exponential amplification reaction.
Wang, Xianfeng; Chen, Xiaolong; Chu, Chengxiang; Deng, Yuanyi; Yang, Mei; Huo, Danqun; Xu, Faliang; Hou, Changjun; Lv, Jiayi.
Afiliación
  • Wang X; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
  • Chen X; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
  • Chu C; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
  • Deng Y; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
  • Yang M; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
  • Huo D; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information
  • Xu F; Medical School of Chongqing University, Chongqing, 400044, PR China. Electronic address: flxu88@163.com.
  • Hou C; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China. Electronic address: houcj@cqu.edu.cn.
  • Lv J; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
Talanta ; 233: 122554, 2021 Oct 01.
Article en En | MEDLINE | ID: mdl-34215057
Accurate and effective detection of single-stranded nucleic acids is vital in both disease diagnosis and pathological studies. Hence, we develop a PAMmer-assisted CRISPR/Cas9 system mediated G4-EXPAR (Cas-G4EX) strategy for site-specific detection of ssRNA and ssDNA. PAMmer-assisted CRISPR/Cas9 executes the site-specific cleavage of target ssRNA or ssDNA and released product fragment with the desired sequence at the 3'-terminal. This fragment serves as a primer to activate subsequent sequence-dependent exponential amplification reaction (EXPAR). The G-rich EXPAR products assembles with hemin to form a G-Quadruplex (G4/hemin). G4/hemin catalyzes ABTS-H2O2 system with the appearance of vivid green color, realizing naked-eye analysis. Cas-G4EX integrates the superiority of CRISPR/Cas9 and EXPAR, presenting outstanding site-specific recognition and high-performance amplification efficiency. Meanwhile, the programmability of CRISPR/Cas9 system makes the proposed method become a universal detection paradigm for any ssRNA or ssDNA. Cas-G4EX assay shows the linear relationship from 250 aM to 2.5 nM for ssRNA detection with the actual LOD of 250 aM, and that ranges from 100 aM to 1 nM for ssDNA detection with the actual LOD of 100 aM. Additionally, the acceptable recoveries of 101.48%-109.61% for ssRNA and 93.25%-111.98% for ssDNA in real detection of human serum are obtained for detection of single-strand nucleic acid in real samples. Cas-G4EX also exhibits the excellent discrimination for single-base mutation of single-stranded nucleic acids. Therefore, Cas-G4EX assay provides a promising platform in the applications of molecular diagnosis and pathological analysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas CRISPR-Cas / Peróxido de Hidrógeno Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Talanta Año: 2021 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas CRISPR-Cas / Peróxido de Hidrógeno Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Talanta Año: 2021 Tipo del documento: Article Pais de publicación: Países Bajos