Your browser doesn't support javascript.
loading
Room-Temperature Negative Differential Resistance in Surface-Supported Metal-Organic Framework Vertical Heterojunctions.
Albano, Luiz G S; de Camargo, Davi H S; Schleder, Gabriel R; Deeke, Samantha G; Vello, Tatiana P; Palermo, Leirson D; Corrêa, Cátia C; Fazzio, Adalberto; Wöll, Christof; Bufon, Carlos C B.
Afiliación
  • Albano LGS; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
  • de Camargo DHS; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
  • Schleder GR; Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil.
  • Deeke SG; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
  • Vello TP; Federal University of ABC (UFABC), Santo André, São Paulo, 09210-580, Brazil.
  • Palermo LD; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
  • Corrêa CC; Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil.
  • Fazzio A; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
  • Wöll C; Department of Physical Chemistry, Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, São Paulo, 13084-862, Brazil.
  • Bufon CCB; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
Small ; 17(35): e2101475, 2021 Sep.
Article en En | MEDLINE | ID: mdl-34288416
The advances of surface-supported metal-organic framework (SURMOF) thin-film synthesis have provided a novel strategy for effectively integrating metal-organic framework (MOF) structures into electronic devices. The considerable potential of SURMOFs for electronics results from their low cost, high versatility, and good mechanical flexibility. Here, the first observation of room-temperature negative differential resistance (NDR) in SURMOF vertical heterojunctions is reported. By employing the rolled-up nanomembrane approach, highly porous sub-15 nm thick HKUST-1 films are integrated into a functional device. The NDR is tailored by precisely controlling the relative humidity (RH) around the device and the applied electric field. The peak-to-valley current ratio (PVCR) of about two is obtained for low voltages (<2 V). A transition from a metastable state to a field emission-like tunneling is responsible for the NDR effect. The results are interpreted through band diagram analysis, density functional theory (DFT) calculations, and ab initio molecular dynamics simulations for quasisaturated water conditions. Furthermore, a low-voltage ternary inverter as a multivalued logic (MVL) application is demonstrated. These findings point out new advances in employing unprecedented physical effects in SURMOF heterojunctions, projecting these hybrid structures toward the future generation of scalable functional devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Alemania