Your browser doesn't support javascript.
loading
Low-Valence Znδ+ (0<δ<2) Single-Atom Material as Highly Efficient Electrocatalyst for CO2 Reduction.
Li, Simin; Zhao, Siqi; Lu, Xiuyuan; Ceccato, Marcel; Hu, Xin-Ming; Roldan, Alberto; Catalano, Jacopo; Liu, Min; Skrydstrup, Troels; Daasbjerg, Kim.
Afiliación
  • Li S; Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
  • Zhao S; Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
  • Lu X; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
  • Ceccato M; Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
  • Hu XM; Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
  • Roldan A; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
  • Catalano J; Department of Biological and Chemical Engineering, Aarhus University, Åbogade 40, 8200, Aarhus N, Denmark.
  • Liu M; State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China.
  • Skrydstrup T; Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
  • Daasbjerg K; Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
Angew Chem Int Ed Engl ; 60(42): 22826-22832, 2021 Oct 11.
Article en En | MEDLINE | ID: mdl-34396665
A nitrogen-stabilized single-atom catalyst containing low-valence zinc atoms (Znδ+ -NC) is reported. It contains saturated four-coordinate (Zn-N4 ) and unsaturated three-coordinate (Zn-N3 ) sites. The latter makes Zn a low-valence state, as deduced from X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory. Znδ+ -NC catalyzes electrochemical reduction of CO2 to CO with near-unity selectivity in water at an overpotential as low as 310 mV. A current density up to 1 A cm-2 can be achieved together with high CO selectivity of >95 % using Znδ+ -NC in a flow cell. Calculations suggest that the unsaturated Zn-N3 could dramatically reduce the energy barrier by stabilizing the COOH* intermediate owing to the electron-rich environment of Zn. This work sheds light on the relationship among coordination number, valence state, and catalytic performance and achieves high current densities relevant for industrial applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Alemania