Your browser doesn't support javascript.
loading
Tooth biomarkers to characterize the temporal dynamics of the fetal and early-life exposome.
Yu, Miao; Tu, Peijun; Dolios, Georgia; Dassanayake, Priyanthi S; Volk, Heather; Newschaffer, Craig; Fallin, M Daniele; Croen, Lisa; Lyall, Kristen; Schmidt, Rebecca; Hertz-Piccioto, Irva; Austin, Christine; Arora, Manish; Petrick, Lauren M.
Afiliación
  • Yu M; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Tu P; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Dolios G; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Dassanayake PS; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Volk H; Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
  • Newschaffer C; College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA.
  • Fallin MD; Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
  • Croen L; Division of Research, Kaiser Permanente Northern California, Oakland, CA 94611, USA.
  • Lyall K; A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA.
  • Schmidt R; Department of Public Health Sciences, University of California, Davis, CA, USA.
  • Hertz-Piccioto I; Department of Public Health Sciences, University of California, Davis, CA, USA.
  • Austin C; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Arora M; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address: manish.arora@mssm.edu.
  • Petrick LM; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address: lauren.petrick@mssm.edu.
Environ Int ; 157: 106849, 2021 12.
Article en En | MEDLINE | ID: mdl-34482270
BACKGROUND: Teeth have unique histology that make this biomatrix a time-capsule for retrospective exposure analysis of fetal and early life. However, most analytic methods require pulverizing the whole tooth, which eliminates exposure timing information. Further, the range of chemicals and endogenous exposures that can be measured in teeth has yet to be fully characterized. METHODS: We performed untargeted metabolomics on micro-dissected layers from naturally shed deciduous teeth. Using four liquid-chromatography high-resolution mass spectrometry analytical modes, we profiled small molecules (<1000 Da) from prenatal and postnatal tooth fractions. In addition, we employed linear regression on the tooth fraction pairs from 31 children to identify metabolites that discriminate between prenatal and postnatal exposures. RESULTS: Of over 10,000 features measured in teeth dentin, 390 unique compounds were annotated from 62 chemical classes. The class with the largest number of compounds was carboxylic acids and their derivatives (36%). Of the annotated exogenous metabolites (phthalates, parabens, perfluoroalkyl compounds, and cotinine) and endogenous metabolites (fatty acids, steroids, carnitines, amino acids, and others), 91 are linked to 256 health conditions through published literature. Differential analysis revealed 267 metabolites significantly different between the prenatal and the postnatal tooth fractions (adj. p-value < 0.05, Bonferroni correction), and 21 metabolites exclusive to the prenatal fraction. CONCLUSIONS: The prenatal and early postnatal exposome revealed from dental biomarkers represents a broad range of endogenous and exogenous metabolites for a comprehensive characterization in environmental health research. Most importantly, this technology provides a direct window into fetal exposures that is not possible by maternal biomarkers. Indeed, we identified several metabolites exclusively in the prenatal fraction, suggesting unique fetal exposures that are markedly different to postnatal exposures. Expansion of databases that include tooth matrix metabolites will strengthen biological interpretation and shed light on exposures during gestation and early life that may be causally linked with later health conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Exposoma Tipo de estudio: Observational_studies Límite: Child / Female / Humans / Pregnancy Idioma: En Revista: Environ Int Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Exposoma Tipo de estudio: Observational_studies Límite: Child / Female / Humans / Pregnancy Idioma: En Revista: Environ Int Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos