Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus.
Comput Biol Med
; 138: 104884, 2021 11.
Article
en En
| MEDLINE
| ID: mdl-34607273
PURPOSE: To investigate the performance of a machine learning model based on a reduced dimensionality parameter space derived from complete Pentacam parameters to identify subclinical keratoconus (KC). METHODS: All 1692 available parameters were obtained from the Pentacam imaging machine on 145 subclinical KC and 122 control eyes. We applied a principal component analysis (PCA) to the complete Pentacam dataset to reduce its parameter dimensionality. Subsequently, we investigated machine learning performance of the random forest algorithm with increasing numbers of components to identify their optimal number for detecting subclinical KC from control eyes. RESULTS: The dimensionality of the complete set of 1692 Pentacam parameters was reduced to 267 principal components using PCA. Subsequent selection of 15 of these principal components explained over 85% of the variance of the original Pentacam-derived parameters and input to train a random forest machine learning model to achieve the best accuracy of 98% in detecting subclinical KC eyes. The model established also reached a high sensitivity of 97% in identification of subclinical KC and a specificity of 98% in recognizing control eyes. CONCLUSIONS: A random forest-based model trained using a modest number of components derived from a reduced dimensionality representation of complete Pentacam system parameters allowed for high accuracy of subclinical KC identification.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Queratocono
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Comput Biol Med
Año:
2021
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Estados Unidos