Your browser doesn't support javascript.
loading
A sui generis QA approach using RoBERTa for adverse drug event identification.
Jain, Harshit; Raj, Nishant; Mishra, Suyash.
Afiliación
  • Jain H; ZS Associates, Bengaluru, India.
  • Raj N; University of Massachusetts Amherst, Amherst, USA. nishantraj@umass.edu.
  • Mishra S; ZS Associates, London, UK.
BMC Bioinformatics ; 22(Suppl 11): 330, 2021 Oct 21.
Article en En | MEDLINE | ID: mdl-34674630
BACKGROUND: Extraction of adverse drug events from biomedical literature and other textual data is an important component to monitor drug-safety and this has attracted attention of many researchers in healthcare. Existing works are more pivoted around entity-relation extraction using bidirectional long short term memory networks (Bi-LSTM) which does not attain the best feature representations. RESULTS: In this paper, we introduce a question answering framework that exploits the robustness, masking and dynamic attention capabilities of RoBERTa by a technique of domain adaptation and attempt to overcome the aforementioned limitations. With formulation of an end-to-end pipeline, our model outperforms the prior work by 9.53% F1-Score. CONCLUSION: An end-to-end pipeline that leverages state of the art transformer architecture in conjunction with QA approach can bolster the performances of entity-relation extraction tasks in the biomedical domain. In particular, we believe our research would be helpful in identification of potential adverse drug reactions in mono as well as combination therapy related textual data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido