A sui generis QA approach using RoBERTa for adverse drug event identification.
BMC Bioinformatics
; 22(Suppl 11): 330, 2021 Oct 21.
Article
en En
| MEDLINE
| ID: mdl-34674630
BACKGROUND: Extraction of adverse drug events from biomedical literature and other textual data is an important component to monitor drug-safety and this has attracted attention of many researchers in healthcare. Existing works are more pivoted around entity-relation extraction using bidirectional long short term memory networks (Bi-LSTM) which does not attain the best feature representations. RESULTS: In this paper, we introduce a question answering framework that exploits the robustness, masking and dynamic attention capabilities of RoBERTa by a technique of domain adaptation and attempt to overcome the aforementioned limitations. With formulation of an end-to-end pipeline, our model outperforms the prior work by 9.53% F1-Score. CONCLUSION: An end-to-end pipeline that leverages state of the art transformer architecture in conjunction with QA approach can bolster the performances of entity-relation extraction tasks in the biomedical domain. In particular, we believe our research would be helpful in identification of potential adverse drug reactions in mono as well as combination therapy related textual data.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Redes Neurales de la Computación
/
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Reino Unido