Your browser doesn't support javascript.
loading
The bone-degrading enzyme machinery: From multi-component understanding to the treatment of residues from the meat industry.
Fernandez-Lopez, Laura; Sanchez-Carrillo, Sergio; García-Moyano, Antonio; Borchert, Erik; Almendral, David; Alonso, Sandra; Cea-Rama, Isabel; Miguez, Noa; Larsen, Øivind; Werner, Johannes; Makarova, Kira S; Plou, Francisco J; Dahlgren, Thomas G; Sanz-Aparicio, Julia; Hentschel, Ute; Bjerga, Gro Elin Kjæreng; Ferrer, Manuel.
Afiliación
  • Fernandez-Lopez L; CSIC, Institute of Catalysis, 28049 Madrid, Spain.
  • Sanchez-Carrillo S; CSIC, Institute of Catalysis, 28049 Madrid, Spain.
  • García-Moyano A; NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway.
  • Borchert E; GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany.
  • Almendral D; CSIC, Institute of Catalysis, 28049 Madrid, Spain.
  • Alonso S; CSIC, Institute of Catalysis, 28049 Madrid, Spain.
  • Cea-Rama I; Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain.
  • Miguez N; CSIC, Institute of Catalysis, 28049 Madrid, Spain.
  • Larsen Ø; NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway.
  • Werner J; High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), Eberhard Karls University of Tübingen, 72074 Tübingen, Germany.
  • Makarova KS; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20892 MD, USA.
  • Plou FJ; CSIC, Institute of Catalysis, 28049 Madrid, Spain.
  • Dahlgren TG; NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway.
  • Sanz-Aparicio J; Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain.
  • Hentschel U; GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany.
  • Bjerga GEK; Christian-Albrechts University of Kiel, 24118 Kiel, Germany.
  • Ferrer M; NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway.
Comput Struct Biotechnol J ; 19: 6328-6342, 2021.
Article en En | MEDLINE | ID: mdl-34938409
Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0-7.0), optimal temperature (5-65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.
Palabras clave
Bone degradation; Bone microbiome; COLL, collagenases (peptidases families U32 and M9); Collagenase; DNS, dinitrosalicylic acid; FALGPA, N-[3-(2-furyl)acryloyl]-L-leucyl-glycyl-L-prolyl-L-alanine; Glycosidase; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HMM, Hidden Markov Models; HPAEC-PAD, High performance anion-exchange chromatography with pulsed amperometric detection; MAG, Metagenome Assembled Genome; Metagenomics; Neu5Ac-GM2, N-acetyl-galactose-ß-1,4-[N-acetylneuraminidate-α-2,3-]-galactose-ß-1,4-glucose-α-ceramide; Neu5Ac-GM3, Neu5Acα2-3Galß1-4Glcß1-ceramide; Ni-NTA, nickel-nitrilotriacetic acid; Osedax mucofloris; PEPT, peptidase (families S1, S8, S53, M61); RHAM, α-rhamnosidases; SIAL, sialidases; pNP-NAßGal, pNP-N-acetyl-ß-galactosaminide; pNP-NAßGlu, pNP-N-acetyl-ß-glucosaminide; pNP-Neu5Ac, 2-O-(p-nitrophenyl)-α-acetylneuraminic acid; pNP-sugars, p-nitrophenyl-sugars; pNP-αAFur, pNP-α-arabinofuranoside; pNP-αAPyr, pNP-α-arabinopyranoside; pNP-αFuc, pNP-α-fucopyranoside; pNP-αGal, pNP-α-galactopyranoside; pNP-αGlu, pNP-α-glucopyranoside; pNP-αMal, pNP-α-maltoside; pNP-αMan, pNP-α-mannopyranoside; pNP-αRham, pNP-α-rhamnopyranoside; pNP-αXyl, pNP-α-xylopyranoside; pNP-ßAPyr, pNP-ß-arabinopyranoside; pNP-ßCel, pNP-ß-cellobioside; pNP-ßFuc, pNP-ß-fucopyranoside; pNP-ßGal, pNP-ß-galactopyranoside; pNP-ßGlu, pNP-ß-glucopyranoside; pNP-ßGlucur, pNP-ß-glucuronide; pNP-ßLac, pNP-ß-lactoside; pNP-ßMan, pNP-ß-mannopyranoside; pNP-ßXyl, pNP-ß-xylopyranoside; αFUC, α-fucosidases; αGAL, α-galactosidases; αMAN, α-mannosidases; αNAG, α-N-acetyl-hexosaminidases; ßGAL, ß-galactosidases; ßGLU, ß-glucosidases; ßNAG, ß-N-acetyl-hexosaminidases

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Países Bajos