Your browser doesn't support javascript.
loading
Synergistic effect of grain boundaries and phonon engineering in Sb substituted Bi2Se3 nanostructures for thermoelectric applications.
Vijay, V; Harish, S; Archana, J; Navaneethan, M.
Afiliación
  • Vijay V; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India.
  • Harish S; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India.
  • Archana J; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India.
  • Navaneethan M; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India; Nanotechnology Research Centre, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203
J Colloid Interface Sci ; 612: 97-110, 2022 Apr 15.
Article en En | MEDLINE | ID: mdl-34979414
Phonon scattering by intrinsic defects and nanostructures has been the primary strategy for minimizing the thermal conductivity in thermoelectric materials. In this work, we present the effect of Isovalent substitution as a method to decouple the Seebeck coefficient and the thermal conductivity of antimony (Sb) substituted bismuth selenide (Bi2Se3). Transmission electron microscopy studies present the nanostructured Bi2-xSbxSe3 thermoelectric system represents the coexistence of hierarchical defect structure and dislocations. The observed giant reduction in thermal conductivity is due to the multi-scale phonon scattering caused by a combination of stacking faults, lattice dislocations and grain boundary scattering. This study reveals that a large number of dislocations about ∼1.09 × 1016 m-2 are particularly effective at lowering thermal conductivity. We achieved one of the ultra-low thermal conductivity values (∼0.26 W/m K) for the maximized dislocation concentration. Moreover, Isovalent substitution provides a new avenue for the reduction in thermal conductivity and significant enhancement in the Seebeck coefficient of thermoelectric materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2022 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2022 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos