Your browser doesn't support javascript.
loading
NoAS-DS: Neural optimal architecture search for detection of diverse DNA signals.
Sivangi, Kaushik Bhargav; Dasari, Chandra Mohan; Amilpur, Santhosh; Bhukya, Raju.
Afiliación
  • Sivangi KB; National Institute of Technology (NIT), Warangal, Telangana, 506004, India.
  • Dasari CM; VIT-AP University, Amaravati, Andhra Pradesh, 522237, India. Electronic address: chandu.nitw44@gmail.com.
  • Amilpur S; National Institute of Technology (NIT), Warangal, Telangana, 506004, India.
  • Bhukya R; National Institute of Technology (NIT), Warangal, Telangana, 506004, India.
Neural Netw ; 147: 63-71, 2022 Mar.
Article en En | MEDLINE | ID: mdl-34979461
Neural network architectures are high-performing variable models that can solve many learning tasks. Designing architectures manually require substantial time and also prior knowledge and expertise to develop a high-accuracy model. Most of the architecture search methods are developed over the task of image classification resulting in the building of complex architectures intended for large data inputs such as images. Motivated by the applications of DNA computing in Neural Architecture Search (NAS), we propose NoAS-DS which is specifically built for the architecture search of sequence-based classification tasks. Furthermore, NoAS-DS is applied to the task of predicting binding sites. Unlike other methods that implement only Convolution layers, NoAS-DS, specifically combines Convolution and LSTM layers that helps in the process of automatic architecture building. This hybrid approach helped in achieving high accuracy results on TFBS and RBP datasets which outperformed other models in TF-DNA binding prediction tasks. The best architectures generated by the proposed model can be applied to other DNA datasets of similar nature using transfer learning technique that demonstrates its generalization capability. This greatly reduces the effort required to build new architectures for other prediction tasks.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos