Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity.
Dalton Trans
; 51(11): 4338-4353, 2022 Mar 15.
Article
en En
| MEDLINE
| ID: mdl-35191437
Four copper(II)-flavonolate compounds of type [Cu(LR)(fla)] {where LR = 2-(p-R-benzyl(dipyridin-2-ylmethyl)amino)acetate; R = -OMe (1), -H (2), -Cl (3) and -NO2 (4)} have been developed as a structural and functional enzyme-substrate (ES) model of the Cu2+-containing quercetin 2,4-dioxygenase enzyme. The ES model complexes 1-4 are synthesized by reacting 3-hydroxyflavone in the presence of a base with the respective acetate-bound copper(II) complexes, [Cu(LR)(OAc)]. In the presence of dioxygen the ES model complexes undergo enzyme-type oxygenolysis of flavonolate (dioxygenase type bond cleavage reaction) at 80 °C in DMF. The reactivity shows a substituent group dependent order as -OMe (1) > -H (2) > -Cl (3) > -NO2 (4). Experimental and theoretical studies suggest a single-electron transfer (SET) from flavonolate to dioxygen, rather than valence tautomerism {[CuII(fla-)] â [CuI(flaË)]}, to generate the reactive flavonoxy radical (flaË) that reacts further with the superoxide radical to bring about the oxygenative ring opening reaction. The SET pathway has been further verified by studying the dioxygenation reaction with a redox-inactive Zn2+ complex, [Zn(LOMe)(fla)] (5).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oxígeno
/
Cobre
/
Flavonoles
/
Complejos de Coordinación
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Dalton Trans
Asunto de la revista:
QUIMICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Reino Unido