Your browser doesn't support javascript.
loading
Prediction of the performance of pre-packed purification columns through machine learning.
Jiang, Qihao; Seth, Sohan; Scharl, Theresa; Schroeder, Tim; Jungbauer, Alois; Dimartino, Simone.
Afiliación
  • Jiang Q; Institute of Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.
  • Seth S; School of Informatics, The University of Edinburgh, Edinburgh, UK.
  • Scharl T; Austrian Centre of Industrial Biotechnology, Vienna, Austria.
  • Schroeder T; Institute of Statistics, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
  • Jungbauer A; Repligen GmbH, Ravensburg, Germany.
  • Dimartino S; Austrian Centre of Industrial Biotechnology, Vienna, Austria.
J Sep Sci ; 45(8): 1445-1457, 2022 Apr.
Article en En | MEDLINE | ID: mdl-35262290
Pre-packed columns have been increasingly used in process development and biomanufacturing thanks to their ease of use and consistency. Traditionally, packing quality is predicted through rate models, which require extensive calibration efforts through independent experiments to determine relevant mass transfer and kinetic rate constants. Here we propose machine learning as a complementary predictive tool for column performance. A machine learning algorithm, extreme gradient boosting, was applied to a large data set of packing quality (plate height and asymmetry) for pre-packed columns as a function of quantitative parameters (column length, column diameter, and particle size) and qualitative attributes (backbone and functional mode). The machine learning model offered excellent predictive capabilities for the plate height and the asymmetry (90 and 93%, respectively), with packing quality strongly influenced by backbone (∼70% relative importance) and functional mode (∼15% relative importance), well above all other quantitative column parameters. The results highlight the ability of machine learning to provide reliable predictions of column performance from simple, generic parameters, including strategic qualitative parameters such as backbone and functionality, usually excluded from quantitative considerations. Our results will guide further efforts in column optimization, for example, by focusing on improvements of backbone and functional mode to obtain optimized packings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Automático Tipo de estudio: Prognostic_studies / Qualitative_research / Risk_factors_studies Idioma: En Revista: J Sep Sci Año: 2022 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Automático Tipo de estudio: Prognostic_studies / Qualitative_research / Risk_factors_studies Idioma: En Revista: J Sep Sci Año: 2022 Tipo del documento: Article Pais de publicación: Alemania