Your browser doesn't support javascript.
loading
High-resolution vibronic spectroscopy of a single molecule embedded in a crystal.
Zirkelbach, Johannes; Mirzaei, Masoud; Deperasinska, Irena; Kozankiewicz, Boleslaw; Gurlek, Burak; Shkarin, Alexey; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid.
Afiliación
  • Zirkelbach J; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
  • Mirzaei M; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
  • Deperasinska I; Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
  • Kozankiewicz B; Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
  • Gurlek B; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
  • Shkarin A; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
  • Utikal T; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
  • Götzinger S; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
  • Sandoghdar V; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
J Chem Phys ; 156(10): 104301, 2022 Mar 14.
Article en En | MEDLINE | ID: mdl-35291792
Vibrational levels of the electronic ground states in dye molecules have not been previously explored at a high resolution in solid matrices. We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene. To do this, we use narrow-band continuous-wave lasers and combine spectroscopy methods based on fluorescence excitation and stimulated emission depletion to assess individual vibrational linewidths in the electronic ground state at a resolution of ∼30 MHz dictated by the linewidth of the electronic excited state. In this fashion, we identify several exceptionally narrow vibronic levels with linewidths down to values around 2 GHz. Additionally, we sample the distribution of vibronic wavenumbers, relaxation rates, and Franck-Condon factors, in both the electronic ground and excited states for a handful of individual molecules. We discuss various noteworthy experimental findings and compare them with the outcome of density functional theory calculations. The highly detailed vibronic spectra obtained in our work pave the way for studying the nanoscopic local environment of single molecules. The approach also provides an improved understanding of the vibrational relaxation mechanisms in the electronic ground state, which may help create long-lived vibrational states for applications in quantum technology.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos