Your browser doesn't support javascript.
loading
Characterization of the wheat VQ protein family and expression of candidate genes associated with seed dormancy and germination.
Cheng, Xinran; Gao, Chang; Liu, Xue; Xu, Dongmei; Pan, Xu; Gao, Wei; Yan, Shengnan; Yao, Hui; Cao, Jiajia; Min, Xiaoyu; Lu, Jie; Chang, Cheng; Zhang, Haiping; Ma, Chuanxi.
Afiliación
  • Cheng X; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Gao C; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
  • Liu X; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Xu D; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Pan X; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Gao W; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Yan S; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Yao H; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Cao J; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Min X; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Lu J; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Chang C; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
  • Zhang H; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China. Changc@ahau.edu.cn.
  • Ma C; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, China. Zhanghaip@ahau.edu.cn.
BMC Plant Biol ; 22(1): 119, 2022 Mar 15.
Article en En | MEDLINE | ID: mdl-35291943
BACKGROUND: Seed dormancy and germination determine wheat resistance to pre-harvest sprouting and thereby affect grain yield and quality. Arabidopsis VQ genes have been shown to influence seed germination; however, the functions of wheat VQ genes have not been characterized. RESULTS: We identified 65 TaVQ genes in common wheat and named them TaVQ1-65. We identified 48 paralogous pairs, 37 of which had Ka/Ks values greater than 1, suggesting that most TaVQ genes have experienced positive selection. Chromosome locations, gene structures, promoter element analysis, and gene ontology annotations of the TaVQs showed that their structures determined their functions and that structural changes reflected functional diversity. Transcriptome-based expression analysis of 62 TaVQ genes and microarray analysis of 11 TaVQ genes indicated that they played important roles in diverse biological processes. We compared TaVQ gene expression and seed germination index values among wheat varieties with contrasting seed dormancy and germination phenotypes and identified 21 TaVQ genes that may be involved in seed dormancy and germination. CONCLUSIONS: Sixty-five TaVQ proteins were identified for the first time in common wheat, and bioinformatics analyses were used to investigate their phylogenetic relationships and evolutionary divergence. qRT-PCR data showed that 21 TaVQ candidate genes were potentially involved in seed dormancy and germination. These findings provide useful information for further cloning and functional analysis of TaVQ genes and introduce useful candidate genes for the improvement of PHS resistance in wheat.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Germinación / Latencia en las Plantas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Germinación / Latencia en las Plantas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido