Your browser doesn't support javascript.
loading
Comparing Themes Extracted via Topic Modeling and Manual Content Analysis: Korean-Language Discussions of Dementia on Twitter.
Lee, Haeyoung; Jang, Sun Joo; Sun, Frederick F; Broadwell, Peter; Yoon, Sunmoo.
Afiliación
  • Lee H; Department of Nursing, Chung-Ang University, South Korea.
  • Jang SJ; Department of Nursing, Chung-Ang University, South Korea.
  • Sun FF; Department of Rehabilitation and Regenerative Medicine, Columbia University, USA.
  • Broadwell P; Center for Interdisciplinary Digital Research, Stanford University, USA.
  • Yoon S; General Medicine, Department of Medicine, Columbia University, USA.
Stud Health Technol Inform ; 295: 230-233, 2022 Jun 29.
Article en En | MEDLINE | ID: mdl-35773850
We randomly examined Korean-language Tweets mentioning dementia/Alzheimer's disease (n= 12,413) posted from November 28 to December 9, 2020, without limiting geographical locations. We independently applied Latent Dirichlet Allocation (LDA) topic modeling and qualitative content analysis to the texts of the Tweets. We compared the themes extracted by LDA topic modeling to those identified via manual coding methods. A total of 16 themes were detected from manual coding, with inter-rater reliability (Cohen's kappa) of 0.842. The proportions of the most prominent themes were: burdens of family caregiving (48.50%), reports of wandering/missing family members with dementia (18.12%), stigma (13.64%), prevention strategies (5.07%), risk factors (4.91%), healthcare policy (3.26%), and elder abuse/safety issues (1.75%). Seven themes whose contents were similar to themes derived from manual coding were extracted from the LDA topic modeling results (perplexity: -6.39, coherence score: 0.45). Our findings suggest that applying LDA topic modeling can be fairly effective at extracting themes from Korean Twitter discussions, in a manner analogous to qualitative coding, to gain insights regarding caregiving for family members with dementia, and our approach can be applied to other languages.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Demencia / Medios de Comunicación Sociales Tipo de estudio: Prognostic_studies / Qualitative_research / Risk_factors_studies Límite: Aged / Humans País/Región como asunto: Asia Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2022 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Demencia / Medios de Comunicación Sociales Tipo de estudio: Prognostic_studies / Qualitative_research / Risk_factors_studies Límite: Aged / Humans País/Región como asunto: Asia Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2022 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Países Bajos