Comparing Themes Extracted via Topic Modeling and Manual Content Analysis: Korean-Language Discussions of Dementia on Twitter.
Stud Health Technol Inform
; 295: 230-233, 2022 Jun 29.
Article
en En
| MEDLINE
| ID: mdl-35773850
We randomly examined Korean-language Tweets mentioning dementia/Alzheimer's disease (n= 12,413) posted from November 28 to December 9, 2020, without limiting geographical locations. We independently applied Latent Dirichlet Allocation (LDA) topic modeling and qualitative content analysis to the texts of the Tweets. We compared the themes extracted by LDA topic modeling to those identified via manual coding methods. A total of 16 themes were detected from manual coding, with inter-rater reliability (Cohen's kappa) of 0.842. The proportions of the most prominent themes were: burdens of family caregiving (48.50%), reports of wandering/missing family members with dementia (18.12%), stigma (13.64%), prevention strategies (5.07%), risk factors (4.91%), healthcare policy (3.26%), and elder abuse/safety issues (1.75%). Seven themes whose contents were similar to themes derived from manual coding were extracted from the LDA topic modeling results (perplexity: -6.39, coherence score: 0.45). Our findings suggest that applying LDA topic modeling can be fairly effective at extracting themes from Korean Twitter discussions, in a manner analogous to qualitative coding, to gain insights regarding caregiving for family members with dementia, and our approach can be applied to other languages.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Demencia
/
Medios de Comunicación Sociales
Tipo de estudio:
Prognostic_studies
/
Qualitative_research
/
Risk_factors_studies
Límite:
Aged
/
Humans
País/Región como asunto:
Asia
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2022
Tipo del documento:
Article
País de afiliación:
Corea del Sur
Pais de publicación:
Países Bajos