Your browser doesn't support javascript.
loading
Temperature elevations can induce switches to homoclinic action potentials that alter neural encoding and synchronization.
Hesse, Janina; Schleimer, Jan-Hendrik; Maier, Nikolaus; Schmitz, Dietmar; Schreiber, Susanne.
Afiliación
  • Hesse J; Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
  • Schleimer JH; Bernstein Center for Computational Neuroscience, Berlin, Germany.
  • Maier N; Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg-University of Applied Sciences and Medical University, Hamburg, 20457, Germany.
  • Schmitz D; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Schreiber S; Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
Nat Commun ; 13(1): 3934, 2022 07 08.
Article en En | MEDLINE | ID: mdl-35803913
ABSTRACT
Almost seventy years after the discovery of the mechanisms of action potential generation, some aspects of their computational consequences are still not fully understood. Based on mathematical modeling, we here explore a type of action potential dynamics - arising from a saddle-node homoclinic orbit bifurcation - that so far has received little attention. We show that this type of dynamics is to be expected by specific changes in common physiological parameters, like an elevation of temperature. Moreover, we demonstrate that it favours synchronization patterns in networks - a feature that becomes particularly prominent when system parameters change such that homoclinic spiking is induced. Supported by in-vitro hallmarks for homoclinic spikes in the rodent brain, we hypothesize that the prevalence of homoclinic spikes in the brain may be underestimated and provide a missing link between the impact of biophysical parameters on abrupt transitions between asynchronous and synchronous states of electrical activity in the brain.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Neurológicos Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Neurológicos Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania