Your browser doesn't support javascript.
loading
Denaturing for Nanoarchitectonics: Local and Periodic UV-Laser Photodeactivation of Protein Biolayers to Create Functional Patterns for Biosensing.
Juste-Dolz, Augusto; Delgado-Pinar, Martina; Avella-Oliver, Miquel; Fernández, Estrella; Cruz, Jose Luís; Andrés, Miguel V; Maquieira, Ángel.
Afiliación
  • Juste-Dolz A; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
  • Delgado-Pinar M; Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, 46100 Burjassot, Spain.
  • Avella-Oliver M; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
  • Fernández E; Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
  • Cruz JL; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
  • Andrés MV; Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, 46100 Burjassot, Spain.
  • Maquieira Á; Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, 46100 Burjassot, Spain.
ACS Appl Mater Interfaces ; 14(36): 41640-41648, 2022 Sep 14.
Article en En | MEDLINE | ID: mdl-36047566
The nanostructuration of biolayers has become a paradigm for exploiting nanoscopic light-matter phenomena for biosensing, among other biomedical purposes. In this work, we present a photopatterning method to create periodic structures of biomacromolecules based on a local and periodic mild denaturation of protein biolayers mediated by UV-laser irradiation. These nanostructures are constituted by a periodic modulation of the protein activity, so they are free of topographic and compositional changes along the pattern. Herein, we introduce the approach, explore the patterning parameters, characterize the resulting structures, and assess their overall homogeneity. This UV-based patterning principle has proven to be an easy, cost-effective, and fast way to fabricate large areas of homogeneous one-dimensional protein patterns (2 min, 15 × 1.2 mm, relative standard deviation ≃ 16%). This work also investigates the implementation of these protein patterns as transducers for diffractive biosensing. Using a model immunoassay, these patterns have demonstrated negligible signal contributions from non-specific bindings and comparable experimental limits of detection in buffer media and in human serum (53 and 36 ng·mL-1 of unlabeled IgG, respectively).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanoestructuras Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanoestructuras Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos