Multi-type emission factors quantification of black carbon from agricultural machinery based on the whole tillage processes in China.
Environ Pollut
; 314: 120280, 2022 Dec 01.
Article
en En
| MEDLINE
| ID: mdl-36167170
Black carbon (BC), as one of the short-lived climate pollutants, is becoming more prominent contribution from non-road mobile source, especially for agricultural machinery (AM) in China. However, the understanding of BC emissions from AM is still not clear, and the BC emission factors (EFs) are also limited. In this study, we conducted real-world measurements on twenty AM to investigate the instantaneous BC emission characteristics and quantify BC EFs under the whole tillage processes. We find the instantaneous BC emissions and fuel consumptions are obvious differences and present good synchronization under different tillage processes. Multi-type (CO2-, fuel-, distance-, time-, and area-based) EFs of BC are developed, which are significantly affected by different tillage processes and emission standards of the used AM. While AM conducting rotary tillage, ploughing, harvest corn and harvest wheat on the same area of land, total BC emissions by using the China III emission standard AM will be reduced by 56%, 36%, 88%, and 87% than those by using China II emission standard AM, respectively. Furthermore, for corn and wheat production under the whole tillage processes, BC EFs are 16.90 (6.03-39.12) g/hm2 and 18.18 (5.91-38.69) g/hm2, CO2 EFs are 112.64 (72.07-195.98) g/hm2 and 103.72 (71.47-167.02) g/hm2, respectively. We estimate the BC and CO2 emissions from wheat and corn productions based on the average area-based EFs. The large fluctuation ranges of BC and CO2 emissions in different tillage processes and the whole processes can reflect that the use of AM in China is uneven. It also indicates that there is a large space for BC and CO2 emission reduction and optimization. Therefore, more attention should be paid to the control of BC and CO2 emissions from AM. We believe that the recommended multi-type EFs are applicable for the quantification of BC emissions from AM in China and other countries.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Contaminantes Atmosféricos
/
Contaminantes Ambientales
País/Región como asunto:
Asia
Idioma:
En
Revista:
Environ Pollut
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido