Your browser doesn't support javascript.
loading
An Approximate Bayesian Computation Approach for Modeling Genome Rearrangements.
Moshe, Asher; Wygoda, Elya; Ecker, Noa; Loewenthal, Gil; Avram, Oren; Israeli, Omer; Hazkani-Covo, Einat; Pe'er, Itsik; Pupko, Tal.
Afiliación
  • Moshe A; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Wygoda E; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Ecker N; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Loewenthal G; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Avram O; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Israeli O; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Hazkani-Covo E; Department of Natural and Life Sciences, Open University of Israel, Ra'anana, Israel.
  • Pe'er I; Department of Computer Science, Columbia University, New York, USA.
  • Pupko T; The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Mol Biol Evol ; 39(11)2022 11 03.
Article en En | MEDLINE | ID: mdl-36282896
The inference of genome rearrangement events has been extensively studied, as they play a major role in molecular evolution. However, probabilistic evolutionary models that explicitly imitate the evolutionary dynamics of such events, as well as methods to infer model parameters, are yet to be fully utilized. Here, we developed a probabilistic approach to infer genome rearrangement rate parameters using an Approximate Bayesian Computation (ABC) framework. We developed two genome rearrangement models, a basic model, which accounts for genomic changes in gene order, and a more sophisticated one which also accounts for changes in chromosome number. We characterized the ABC inference accuracy using simulations and applied our methodology to both prokaryotic and eukaryotic empirical datasets. Knowledge of genome-rearrangement rates can help elucidate their role in evolution as well as help simulate genomes with evolutionary dynamics that reflect empirical genomes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma / Evolución Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2022 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma / Evolución Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2022 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Estados Unidos