Your browser doesn't support javascript.
loading
Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems.
Macetti, Giovanni; Genoni, Alessandro.
Afiliación
  • Macetti G; Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France.
  • Genoni A; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
Molecules ; 28(1)2022 Dec 24.
Article en En | MEDLINE | ID: mdl-36615331
ABSTRACT
Despite great advances in X-ray absorption spectroscopy for the investigation of small molecule electronic structure, the application to biosystems of experimental techniques developed within this research field remains a challenge. To partially circumvent the problem, users resort to theoretical methods to interpret or predict the X-ray absorption spectra of large molecules. To accomplish this task, only low-cost computational strategies can be exploited. For this reason, some of them are single Slater determinant wavefunction approaches coupled with multiscale embedding techniques designed to treat large systems of biological interest. Therefore, in this work, we propose to apply the recently developed IMOM/ELMO embedding method to the determination of core-ionized states. The IMOM/ELMO technique resulted from the combination of the single Slater determinant Δself-consistent-field-initial maximum overlap approach (ΔSCF-IMOM) with the QM/ELMO (quantum mechanics/extremely localized molecular orbital) embedding strategy, a method where only the chemically relevant region of the examined system is treated at fully quantum chemical level, while the rest is described through transferred and frozen extremely localized molecular orbitals (ELMOs). The IMOM/ELMO technique was initially validated by computing core-ionization energies for small molecules, and it was afterwards exploited to study larger biosystems. The obtained results are in line with those reported in previous studies that applied alternative ΔSCF approaches. This makes us envisage a possible future application of the proposed method to the interpretation of X-ray absorption spectra of large molecules.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teoría Cuántica Tipo de estudio: Prognostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teoría Cuántica Tipo de estudio: Prognostic_studies Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Francia