Your browser doesn't support javascript.
loading
A QoT prediction technique based on machine learning and NLSE for QoS and new lightpaths in optical communication networks.
Fu, Yongfeng; Chen, Jing; Wu, Weiming; Huang, Yu; Hong, Jie; Chen, Long; Li, Zhongbin.
Afiliación
  • Fu Y; Hainan Power Grid Co., Ltd., Haikou, 570100, China. 710256653@qq.com.
  • Chen J; Hainan Power Grid Co., Ltd., Haikou, 570100, China.
  • Wu W; Hainan Power Grid Co., Ltd., Haikou, 570100, China.
  • Huang Y; Power Dispatching Control Center of China, Southern Power Grid, Shenzhen, 5180008, China.
  • Hong J; Hainan Power Grid Co., Ltd., Haikou, 570100, China.
  • Chen L; Hainan Power Grid Co., Ltd., Haikou, 570100, China.
  • Li Z; China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Guangzhou, 511458, China. lizhou@csg.cn.
Front Optoelectron ; 14(4): 513-521, 2021 Dec.
Article en En | MEDLINE | ID: mdl-36637759
In this paper, we proposed a quality of transmission (QoT) prediction technique for the quality of service (QoS) link setup based on machine learning classifiers, with synthetic data generated using the transmission equations instead of the Gaussian noise (GN) model. The proposed technique uses some link and signal characteristics as input features. The bit error rate (BER) of the signals was compared with the forward error correction threshold BER, and the comparison results were employed as labels. The transmission equations approach is a better alternative to the GN model (or other similar margin-based models) in the absence of real data (i.e., at the deployment stage of a network) or the case that real data are scarce (i.e., for enriching the dataset/reducing probing lightpaths); furthermore, the three classifiers trained using the data of the transmission equations are more reliable and practical than those trained using the data of the GN model. Meanwhile, we noted that the priority of the three classifiers should be support vector machine (SVM) >K nearest neighbor (KNN) > logistic regression (LR) as shown in the results obtained by the transmission equations, instead of SVM > LR > KNN as in the results of the GN model.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Optoelectron Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Optoelectron Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: China