Your browser doesn't support javascript.
loading
scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection.
Zhang, Ziqi; Sun, Haoran; Mariappan, Ragunathan; Chen, Xi; Chen, Xinyu; Jain, Mika S; Efremova, Mirjana; Teichmann, Sarah A; Rajan, Vaibhav; Zhang, Xiuwei.
Afiliación
  • Zhang Z; School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • Sun H; School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA.
  • Mariappan R; Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore.
  • Chen X; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
  • Chen X; Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, USA.
  • Jain MS; Wellcome Sanger Institute, Hinxton, UK.
  • Efremova M; Cancer Research UK Barts Center, London, UK.
  • Teichmann SA; Wellcome Sanger Institute, Hinxton, UK.
  • Rajan V; Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore.
  • Zhang X; School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA. xiuwei.zhang@gatech.edu.
Nat Commun ; 14(1): 384, 2023 01 24.
Article en En | MEDLINE | ID: mdl-36693837
Single cell data integration methods aim to integrate cells across data batches and modalities, and data integration tasks can be categorized into horizontal, vertical, diagonal, and mosaic integration, where mosaic integration is the most general and challenging case with few methods developed. We propose scMoMaT, a method that is able to integrate single cell multi-omics data under the mosaic integration scenario using matrix tri-factorization. During integration, scMoMaT is also able to uncover the cluster specific bio-markers across modalities. These multi-modal bio-markers are used to interpret and annotate the clusters to cell types. Moreover, scMoMaT can integrate cell batches with unequal cell type compositions. Applying scMoMaT to multiple real and simulated datasets demonstrated these features of scMoMaT and showed that scMoMaT has superior performance compared to existing methods. Specifically, we show that integrated cell embedding combined with learned bio-markers lead to cell type annotations of higher quality or resolution compared to their original annotations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Multiómica Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Multiómica Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido