Your browser doesn't support javascript.
loading
Developing Superior Hydrophobic 3D Hierarchical Electrocatalysts Embedding Abundant Catalytic Species for High Power Density Zn-Air Battery.
Zhao, Dafu; Zhang, Liping; Zuo, Siyu; Lv, Xiaowei; Zhao, Meiyun; Sun, Panpan; Sun, Xiaohua; Liu, Tianbiao Leo.
Afiliación
  • Zhao D; College of Materials and Chemical Engineering, College of Mechanical and Power Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
  • Zhang L; Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, China.
  • Zuo S; Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
  • Lv X; College of Materials and Chemical Engineering, College of Mechanical and Power Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
  • Zhao M; Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, China.
  • Sun P; College of Materials and Chemical Engineering, College of Mechanical and Power Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
  • Sun X; Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, China.
  • Liu TL; College of Materials and Chemical Engineering, College of Mechanical and Power Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
Small ; 19(18): e2206067, 2023 May.
Article en En | MEDLINE | ID: mdl-36720012
It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc-air batteries (ZABs). Herein, a CoFe-S@3D-S-NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf-like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe-MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core-shell structure, and S, N-doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm-2 ), superior specific capacity (815 mA h gZn -1 ), and excellent stability at 5 mA cm-2 for ≈900 h. The quasi-solid-state ZABs also exhibit a very high peak power density of 490 mW cm-2 and an excellent voltage round-trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania