Your browser doesn't support javascript.
loading
A pharmacokinetic model based on the SSA-1DCNN-Attention method.
He, Zi-Yi; Yang, Jie-Yu; Li, Yong.
Afiliación
  • He ZY; Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China.
  • Yang JY; Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China.
  • Li Y; Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China.
J Bioinform Comput Biol ; 21(1): 2350004, 2023 02.
Article en En | MEDLINE | ID: mdl-36884017
To solve the problem of the lack of representativeness of the training set and the poor prediction accuracy due to the limited number of training samples when the machine learning method is used for the classification and prediction of pharmacokinetic indicators, this paper proposes a 1DCNN-Attention concentration prediction model optimized by the sparrow search algorithm (SSA). First, the SMOTE method is used to expand the small sample experimental data to make the data diverse and representative. Then a one-dimensional convolutional neural network (1DCNN) model is established, and the attention mechanism is introduced to calculate the weight of each variable for dividing the importance of each pharmacokinetic indicator by the output drug concentration. The SSA algorithm was used to optimize the parameters in the model to improve the prediction accuracy after data expansion. Taking the pharmacokinetic model of phenobarbital (PHB) combined with Cynanchum otophyllum saponins to treat epilepsy as an example, the concentration changes of PHB were predicted and the effectiveness of the method was verified. The results show that the proposed model has a better prediction effect than other methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: J Bioinform Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article Pais de publicación: Singapur

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: J Bioinform Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article Pais de publicación: Singapur