Unprecedented atomic surface of silicon induced by environmentally friendly chemical mechanical polishing.
Nanoscale
; 15(21): 9304-9314, 2023 Jun 01.
Article
en En
| MEDLINE
| ID: mdl-37171082
Silicon (Si) dominates the integrated circuit (IC), semiconductor, and microelectronic industries. However, it is a challenge to achieve a sub-angstrom surface of Si. Chemical mechanical polishing (CMP) is widely used in the manufacturing of Si, while toxic and polluted slurries are usually employed in CMP, resulting in pollution to the environment. In this study, a novel environmentally friendly CMP was developed, in which a slurry is composed of ceria, hydrogen peroxide, sodium pyrophosphate, sodium carboxymethyl cellulose, sodium carbonate, and deionized water. After CMP, the surface roughness Sa was 0.067 nm with a measurement area of 50 × 50 µm2, and a sub-angstrom surface is achieved. To the best of our knowledge, it is the lowest surface roughness in such a large area. Transmission electron microscopy shows that the thickness of the damaged layer after CMP is 2.8 nm. X-ray photoelectron spectroscopy and infrared Fourier transformation reveal that during CMP, a redox reaction firstly took place between Ce3+ and Ce4+. Si and ceria are hydroxylated, forming Si-OH and Ce-OH, then dehydration and condensation occur, generating Si-O-Ce. These findings propose new insights to fabricate a sub-angstrom surface of Si for use in IC, semiconductor, and microelectronic industries.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanoscale
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido