Your browser doesn't support javascript.
loading
Towards a leptospirosis early warning system in northeastern Argentina.
Lotto Batista, Martín; Rees, Eleanor M; Gómez, Andrea; López, Soledad; Castell, Stefanie; Kucharski, Adam J; Ghozzi, Stéphane; Müller, Gabriela V; Lowe, Rachel.
Afiliación
  • Lotto Batista M; Department for Epidemiology, Helmholtz Centre for Infection Research, 38124 Brunswick, Germany.
  • Rees EM; Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.
  • Gómez A; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
  • López S; Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
  • Castell S; Centre for Studies of Climate Variability and Climate Change (CEVARCAM), National University of Litoral (UNL), S3000 Santa Fe, Argentina.
  • Kucharski AJ; National Council for Scientific and Technical Research (CONICET), C1425FQB Santa Fe, Argentina.
  • Ghozzi S; Centre for Studies of Climate Variability and Climate Change (CEVARCAM), National University of Litoral (UNL), S3000 Santa Fe, Argentina.
  • Müller GV; National Council for Scientific and Technical Research (CONICET), C1425FQB Santa Fe, Argentina.
  • Lowe R; Department for Epidemiology, Helmholtz Centre for Infection Research, 38124 Brunswick, Germany.
J R Soc Interface ; 20(202): 20230069, 2023 05.
Article en En | MEDLINE | ID: mdl-37194269
Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leptospirosis Tipo de estudio: Prognostic_studies Límite: Humans País/Región como asunto: America do sul / Argentina Idioma: En Revista: J R Soc Interface Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leptospirosis Tipo de estudio: Prognostic_studies Límite: Humans País/Región como asunto: America do sul / Argentina Idioma: En Revista: J R Soc Interface Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido