Your browser doesn't support javascript.
loading
A novel trans-acting lncRNA of ACTG1 that induces the remodeling of ovarian follicles.
Li, Nian; Zhou, Yinqi; Cai, Jiali; Wang, Yifei; Zhou, Xiaofeng; Hu, Mengting; Li, Yubin; Zhang, Hao; Li, Jiaqi; Cai, Bing; Yuan, Xiaolong.
Afiliación
  • Li N; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Zhou Y; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Cai J; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Wang Y; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Zhou X; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Hu M; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Li Y; Reproductive Medical Center, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong 510080, China.
  • Zhang H; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Li J; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
  • Cai B; Reproductive Medical Center, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong 510080, China. Electronic address: caib5@mail.sysu.edu.cn.
  • Yuan X; Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agr
Int J Biol Macromol ; 242(Pt 4): 125170, 2023 Jul 01.
Article en En | MEDLINE | ID: mdl-37276900
Previous studies have implicated the attractive role of long noncoding RNAs (lncRNAs) in the remodeling of mammalian tissues. The migration of granulosa cells (GCs), which are the main supporting cells in ovarian follicles, stimulates the follicular remodeling. Here, with the cultured GCs as the follicular model, the actin gamma 1 (ACTG1) was observed to significantly promote the migration and proliferation while inhibit the apoptosis of GCs, suggesting that ACTG1 was required for ovarian remodeling. Moreover, we identified the trans-regulatory lncRNA of ACTG1 (TRLA), which was epigenetically targeted by histone H3 lysine 4 acetylation (H3K4ac). Mechanistically, the 2-375 nt of TRLA bound to ACTG1's mRNA to increase the expression of ACTG1. Furthermore, TRLA facilitated the migration and proliferation while inhibited the apoptosis of GCs, thereby accelerating follicular remodeling. Besides, TRLA acted as a ceRNA for miR-26a to increase the expression of high-mobility group AT-hook 1 (HMGA1). Collectively, TRLA induces the remodeling of ovarian follicles via complementary to ACTG1's mRNA and regulating miR-26a/HMGA1 axis in GCs. These observations revealed a novel and promising trans-acting lncRNA mechanism mediated by H3K4ac, and TRLA might be a new target to restore follicular remodeling and development.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / ARN Largo no Codificante Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2023 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: MicroARNs / ARN Largo no Codificante Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2023 Tipo del documento: Article Pais de publicación: Países Bajos