Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering.
Int J Biol Macromol
; 243: 125218, 2023 Jul 15.
Article
en En
| MEDLINE
| ID: mdl-37285889
Recently, coating on composite scaffolds has attracted many researchers' attention to improve scaffolds' properties. In this research, a 3D printed scaffold was fabricated from polycaprolactone (PCL)/magnetic mesoporous bioactive glass (MMBG)/alumina nanowire (Al2O3, Optimal percentage 5 %) (PMA) and then coated with chitosan (Cs)/multi-walled carbon nanotubes (MWCNTs) by an immersion coating method. Structural analyses such as XRD and ATR-FTIR confirmed the presence of Cs and MWCNTs in the coated scaffolds. The SEM results of the coated scaffolds showed homogeneous three-dimensional structures with interconnected pores compared to the uncoated scaffolds. The coated scaffolds exhibited an increase in compression strength (up to 16.1 MPa) and compressive modulus (up to 40.83 MPa), improved surface hydrophilicity (up to 32.69°), and decrease in degradation rate (68 % remaining weight) compared to the uncoated scaffolds. The increase in apatite formation in the scaffold coated with Cs/MWCNTs was confirmed by SEM, EDAX, and XRD tests. Coating the PMA scaffold with Cs/MWCNTs leads to the viability and proliferation of MG-63 cells and more secretion of alkaline phosphatase and Ca activity, which can be introduced as a suitable candidate for use in bone tissue engineering.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Nanotubos de Carbono
/
Quitosano
/
Nanocompuestos
Idioma:
En
Revista:
Int J Biol Macromol
Año:
2023
Tipo del documento:
Article
País de afiliación:
Irán
Pais de publicación:
Países Bajos