Your browser doesn't support javascript.
loading
Comparing Emotional Valence Scores of Twitter Messages from Human Coding and Machine Learning Algorithms Among Hispanic and African American Family Caregivers of Persons with Dementia.
Yoon, Sunmoo; Broadwell, Peter; Tipiani, Dante; Bristol, Amanda; Moon, Soyoung; Yoon, Brian; Liu, Jianfang; Huang, Niya; Davis, Nicole.
Afiliación
  • Yoon S; Columbia University Irving Medical Center, New York, NY, USA.
  • Broadwell P; Center for Interdisciplinary Digital Research, Stanford University, Stanford, CA, USA.
  • Tipiani D; CaringKind, New York, NY, USA.
  • Bristol A; Columbia University Irving Medical Center, New York, NY, USA.
  • Moon S; Teachers College, Columbia University, New York, NY, USA.
  • Yoon B; Columbia University Irving Medical Center, New York, NY, USA.
  • Liu J; School of Nursing, Columbia University, New York, NY, USA.
  • Huang N; University of California in San Francisco, San Francisco, CA, USA.
  • Davis N; School of Nursing, Clemson University, Clemson, SC, USA.
Stud Health Technol Inform ; 305: 440-443, 2023 Jun 29.
Article en En | MEDLINE | ID: mdl-37387060
We compared emotional valence scores as determined via machine learning approaches to human-coded scores of direct messages on Twitter from our 2,301 followers during a Twitter-based clinical trial screening for Hispanic and African American family caregivers of persons with dementia. We manually assigned emotional valence scores to 249 randomly selected direct Twitter messages from our followers (N=2,301), then we applied three machine learning sentiment analysis algorithms to extract emotional valence scores for each message and compared their mean scores to the human coding results. The aggregated mean emotional scores from the natural language processing were slightly positive, while the mean score from human coding as a gold standard was negative. Clusters of strongly negative sentiments were observed in followers' responses to being found non-eligible for the study, indicating a significant need for alternative strategies to provide similar research opportunities to non-eligible family caregivers.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Demencia / Emociones / Medios de Comunicación Sociales Tipo de estudio: Clinical_trials / Diagnostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Demencia / Emociones / Medios de Comunicación Sociales Tipo de estudio: Clinical_trials / Diagnostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos