Your browser doesn't support javascript.
loading
Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture.
Peng, Yu-Hsuan; Hsiao, Syuan-Ku; Gupta, Krishna; Ruland, André; Auernhammer, Günter K; Maitz, Manfred F; Boye, Susanne; Lattner, Johanna; Gerri, Claudia; Honigmann, Alf; Werner, Carsten; Krieg, Elisha.
Afiliación
  • Peng YH; Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Hsiao SK; Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
  • Gupta K; Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Ruland A; Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
  • Auernhammer GK; Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Maitz MF; Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
  • Boye S; Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Lattner J; Institute for Physical Chemistry and Polymer Physics, Polymer Interfaces, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Gerri C; Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Honigmann A; Institute for Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
  • Werner C; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Krieg E; Center for Systems Biology Dresden, Dresden, Germany.
Nat Nanotechnol ; 18(12): 1463-1473, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37550574
Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Organoides / Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Nat Nanotechnol Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Organoides / Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Nat Nanotechnol Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido