Enable Multi-Stimuli-Responsive Biomimetic Actuation with Asymmetric Design of Graphene-Conjugated Conductive Polymer Gradient Film.
ACS Nano
; 17(16): 16123-16134, 2023 Aug 22.
Article
en En
| MEDLINE
| ID: mdl-37565780
In this paper, multiresponsive actuators based on asymmetric design of graphene-conjugated poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) gradient films have been developed by a simple drop casting method. The biomimetic actuation is attributed to the hygroscopic expansion property of PEDOT:PSS and the gradient distribution of graphene sheets within the film, which resembles the hierarchical swelling tissues of some plants in nature. Graphene-conjugated PEDOT:PSS (GCP) actuators exhibit reversible bending behavior under multistimuli such as moisture, organic vapor, electrothermal, and photothermal heating. Noticeably, the bending curvature reaches 2.15 cm-1 under applied voltage as low as 1.5 V owing to the high electrical conductivity of GCP actuator. To mimic the motions of nyctinastic plants, a GCP artificial flower that spreads its petals under sunlight illumination has been fabricated. GCP actuators have been also demonstrated as intelligent light-controlled switches for light-emitting diodes and smart curtains for thermal management. Not only do the GCP gradient films exhibit potential applications in flexible electronics and energy harvesting/storage devices but also the facile fabrication of multiresponsive GCP actuators may shed light on the development of soft robotics, artificial muscles, wearable electronics, and smart sensors.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Nano
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos