Your browser doesn't support javascript.
loading
Ultrafast Anisotropy Decay Reveals Structure and Energy Transfer in Supramolecular Aggregates.
Eric, Vesna; Castro, Jorge Luis; Li, Xinmeng; Dsouza, Lolita; Frehan, Sean K; Huijser, Annemarie; Holzwarth, Alfred R; Buda, Francesco; Sevink, G J Agur; de Groot, Huub J M; Jansen, Thomas L C.
Afiliación
  • Eric V; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
  • Castro JL; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
  • Li X; Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway.
  • Dsouza L; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • Frehan SK; MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
  • Huijser A; MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
  • Holzwarth AR; Department of Biophysical Chemistry, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany.
  • Buda F; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • Sevink GJA; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • de Groot HJM; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
  • Jansen TLC; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
J Phys Chem B ; 127(34): 7487-7496, 2023 Aug 31.
Article en En | MEDLINE | ID: mdl-37594912
Chlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions. Spectral simulations of polarization-resolved two-dimensional electronic spectra unravel how changes in the helicity of chlorosomal aggregates alter energy transfer. We show that ultrafast anisotropy decay presents a spectral signature that reveals contrasting energy pathways in different chlorosomes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos