Your browser doesn't support javascript.
loading
Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition.
Xue, Siwei; Wang, Shuiyuan; Wu, Tianxiang; Di, Ziye; Xu, Nuo; Sun, Yibo; Zeng, Chaofan; Ma, Shunli; Zhou, Peng.
Afiliación
  • Xue S; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Wang S; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China. Electronic address: sy_wang@fudan.edu.cn.
  • Wu T; State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
  • Di Z; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Xu N; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Sun Y; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Zeng C; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China.
  • Ma S; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China. Electronic address: shunlima@fudan.edu.cn.
  • Zhou P; Shanghai Key Laboratory for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai 200433, China; Frontier Institute of Chip and System & Qizhi Institute, Fudan University, Shanghai 200433, China; Hubei Yangtze Memory Laboratories, Wuhan 430205, China. Elect
Sci Bull (Beijing) ; 68(20): 2336-2343, 2023 10 30.
Article en En | MEDLINE | ID: mdl-37714804
Neuromorphic computing enables efficient processing of data-intensive tasks, but requires numerous artificial synapses and neurons for certain functions, which leads to bulky systems and energy challenges. Achieving functionality with fewer synapses and neurons will facilitate integration density and computility. Two-dimensional (2D) materials exhibit potential for artificial synapses, including diverse biomimetic plasticity and efficient computing. Considering the complexity of neuron circuits and the maturity of complementary metal-oxide-semiconductor (CMOS), hybrid integration is attractive. Here, we demonstrate a hybrid neuromorphic hardware with 2D MoS2 synaptic arrays and CMOS neural circuitry integrated on board. With the joint benefit of hybrid integration, frequency coding and feature extraction, a total cost of twelve MoS2 synapses, three CMOS neurons, combined with digital/analogue converter enables alphabetic and numeric recognition. MoS2 synapses exhibit progressively tunable weight plasticity, CMOS neurons integrate and fire frequency-encoded spikes to display the target characters. The synapse- and neuron-saving hybrid hardware exhibits a competitive accuracy of 98.8% and single recognition energy consumption of 11.4 µW. This work provides a viable solution for building neuromorphic hardware with high compactness and computility.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Molibdeno Idioma: En Revista: Sci Bull (Beijing) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Molibdeno Idioma: En Revista: Sci Bull (Beijing) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos