Your browser doesn't support javascript.
loading
Monitoring the Relationship between Social Network Status and Influenza Based on Social Media Data.
Yan, Qi; Shan, Siqing; Zhang, Baishang; Sun, Weize; Sun, Menghan; Luo, Yiting; Zhao, Feng; Guo, Xiaoshuang.
Afiliación
  • Yan Q; Management School, Tianjin Normal University, Tianjin, China.
  • Shan S; School of Economics and Management, Beihang University, Beijing, China.
  • Zhang B; Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing, China.
  • Sun W; Development Research Center of State Administration for Market Regulation of the PR China, Beijing, China.
  • Sun M; School of Economics and Management, Beihang University, Beijing, China.
  • Luo Y; Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing, China.
  • Zhao F; School of Economics and Management, Beihang University, Beijing, China.
  • Guo X; Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing, China.
Disaster Med Public Health Prep ; 17: e490, 2023 09 18.
Article en En | MEDLINE | ID: mdl-37721020
BACKGROUND: This article aims to analyze the relationship between user characteristics on social networks and influenza. METHODS: Three specific research questions are investigated: (1) we classify Weibo updates to recognize influenza-related information based on machine learning algorithms and propose a quantitative model for influenza susceptibility in social networks; (2) we adopt in-degree indicator from complex networks theory as social media status to verify its coefficient correlation with influenza susceptibility; (3) we also apply the LDA topic model to explore users' physical condition from Weibo to further calculate its coefficient correlation with influenza susceptibility. From the perspective of social networking status, we analyze and extract influenza-related information from social media, with many advantages including efficiency, low cost, and real time. RESULTS: We find a moderate negative correlation between the susceptibility of users to influenza and social network status, while there is a significant positive correlation between physical condition and susceptibility to influenza. CONCLUSIONS: Our findings reveal the laws behind the phenomenon of online disease transmission, and providing important evidence for analyzing, predicting, and preventing disease transmission. Also, this study provides theoretical and methodological underpinnings for further exploration and measurement of more factors associated with infection control and public health from social networks.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gripe Humana / Medios de Comunicación Sociales Tipo de estudio: Prognostic_studies Aspecto: Determinantes_sociais_saude Límite: Humans Idioma: En Revista: Disaster Med Public Health Prep Asunto de la revista: SAUDE PUBLICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gripe Humana / Medios de Comunicación Sociales Tipo de estudio: Prognostic_studies Aspecto: Determinantes_sociais_saude Límite: Humans Idioma: En Revista: Disaster Med Public Health Prep Asunto de la revista: SAUDE PUBLICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos