Your browser doesn't support javascript.
loading
Prediction of cancer treatment response from histopathology images through imputed transcriptomics.
Hoang, Danh-Tai; Dinstag, Gal; Hermida, Leandro C; Ben-Zvi, Doreen S; Elis, Efrat; Caley, Katherine; Sammut, Stephen-John; Sinha, Sanju; Sinha, Neelam; Dampier, Christopher H; Stossel, Chani; Patil, Tejas; Rajan, Arun; Lassoued, Wiem; Strauss, Julius; Bailey, Shania; Allen, Clint; Redman, Jason; Beker, Tuvik; Jiang, Peng; Golan, Talia; Wilkinson, Scott; Sowalsky, Adam G; Pine, Sharon R; Caldas, Carlos; Gulley, James L; Aldape, Kenneth; Aharonov, Ranit; Stone, Eric A; Ruppin, Eytan.
Afiliación
  • Hoang DT; Biological Data Science Institute, College of Science, Australian National University, Canberra, ACT, Australia.
  • Dinstag G; Pangea Biomed Ltd., Tel Aviv, Israel.
  • Hermida LC; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Ben-Zvi DS; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
  • Elis E; Pangea Biomed Ltd., Tel Aviv, Israel.
  • Caley K; Pangea Biomed Ltd., Tel Aviv, Israel.
  • Sammut SJ; Biological Data Science Institute, College of Science, Australian National University, Canberra, ACT, Australia.
  • Sinha S; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom.
  • Sinha N; The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom.
  • Dampier CH; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
  • Stossel C; Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Patil T; Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Rajan A; Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Lassoued W; Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel.
  • Strauss J; Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Bailey S; Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Allen C; Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Redman J; Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Beker T; Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Jiang P; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Golan T; Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Wilkinson S; Pangea Biomed Ltd., Tel Aviv, Israel.
  • Sowalsky AG; Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Pine SR; Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel.
  • Caldas C; Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Gulley JL; Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Aldape K; Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Aharonov R; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
  • Stone EA; Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • Ruppin E; Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
Res Sq ; 2023 Sep 15.
Article en En | MEDLINE | ID: mdl-37790315
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin (H&E)-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an approach for predicting response to multiple targeted and immunotherapies from H&E-slides. In difference from existing approaches that aim to predict treatment response directly from the slides, ENLIGHT-DeepPT is an indirect two-step approach consisting of (1) DeepPT, a new deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response based on the DeepPT inferred expression values. DeepPT successfully predicts transcriptomics in all 16 TCGA cohorts tested and generalizes well to two independent datasets. Our key contribution is showing that ENLIGHT-DeepPT successfully predicts true responders in five independent patients' cohorts involving four different treatments spanning six cancer types with an overall odds ratio of 2.44, increasing the baseline response rate by 43.47% among predicted responders, without the need for any treatment data for training. Furthermore, its prediction accuracy on these datasets is comparable to a supervised approach predicting the response directly from the images, which needs to be trained and tested on the same cohort. ENLIGHT-DeepPT future application could provide clinicians with rapid treatment recommendations to an array of different therapies and importantly, may contribute to advancing precision oncology in developing countries.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Res Sq Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Res Sq Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos