Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning.
J Am Heart Assoc
; 12(20): e030508, 2023 10 17.
Article
en En
| MEDLINE
| ID: mdl-37804197
Background Carotid endarterectomy (CEA) is a major vascular operation for stroke prevention that carries significant perioperative risks; however, outcome prediction tools remain limited. The authors developed machine learning algorithms to predict outcomes following CEA. Methods and Results The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent CEA between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse cardiovascular events (composite of stroke, myocardial infarction, or death). The data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using preoperative features. The primary metric for evaluating model performance was area under the receiver operating characteristic curve. Model robustness was evaluated with calibration plot and Brier score. Overall, 38 853 patients underwent CEA during the study period. Thirty-day major adverse cardiovascular events occurred in 1683 (4.3%) patients. The best performing prediction model was XGBoost, achieving an area under the receiver operating characteristic curve of 0.91 (95% CI, 0.90-0.92). In comparison, logistic regression had an area under the receiver operating characteristic curve of 0.62 (95% CI, 0.60-0.64), and existing tools in the literature demonstrate area under the receiver operating characteristic curve values ranging from 0.58 to 0.74. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The strongest predictive feature in our algorithm was carotid symptom status. Conclusions The machine learning models accurately predicted 30-day outcomes following CEA using preoperative data and performed better than existing tools. They have potential for important utility in guiding risk-mitigation strategies to improve outcomes for patients being considered for CEA.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Endarterectomía Carotidea
/
Accidente Cerebrovascular
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
J Am Heart Assoc
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Reino Unido