Your browser doesn't support javascript.
loading
A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis.
Barnett, Michael; Wang, Dongang; Beadnall, Heidi; Bischof, Antje; Brunacci, David; Butzkueven, Helmut; Brown, J William L; Cabezas, Mariano; Das, Tilak; Dugal, Tej; Guilfoyle, Daniel; Klistorner, Alexander; Krieger, Stephen; Kyle, Kain; Ly, Linda; Masters, Lynette; Shieh, Andy; Tang, Zihao; van der Walt, Anneke; Ward, Kayla; Wiendl, Heinz; Zhan, Geng; Zivadinov, Robert; Barnett, Yael; Wang, Chenyu.
Afiliación
  • Barnett M; Sydney Neuroimaging Analysis Centre, Sydney, NSW, Australia.
  • Wang D; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
  • Beadnall H; Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
  • Bischof A; Sydney Neuroimaging Analysis Centre, Sydney, NSW, Australia.
  • Brunacci D; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
  • Butzkueven H; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
  • Brown JWL; Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
  • Cabezas M; Department of Neurology, University Hospital of Muenster, Muenster, Germany.
  • Das T; Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
  • Dugal T; Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia.
  • Guilfoyle D; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
  • Klistorner A; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Krieger S; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
  • Kyle K; Department of Radiology, University of Cambridge, Cambridge, UK.
  • Ly L; Sydney Neuroimaging Analysis Centre, Sydney, NSW, Australia.
  • Masters L; Synergy Radiology, Sydney, NSW, Australia.
  • Shieh A; Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
  • Tang Z; Sydney Neuroimaging Analysis Centre, Sydney, NSW, Australia.
  • van der Walt A; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
  • Ward K; Save Sight Institute, University of Sydney, Sydney, NSW, Australia.
  • Wiendl H; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Zhan G; Sydney Neuroimaging Analysis Centre, Sydney, NSW, Australia.
  • Zivadinov R; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
  • Barnett Y; Sydney Neuroimaging Analysis Centre, Sydney, NSW, Australia.
  • Wang C; I-MED Radiology, Sydney, NSW, Australia.
NPJ Digit Med ; 6(1): 196, 2023 Oct 19.
Article en En | MEDLINE | ID: mdl-37857813
Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC -0.32% vs -0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: NPJ Digit Med Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: NPJ Digit Med Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido