Your browser doesn't support javascript.
loading
Cell Viability Assessment of PEDOT Conducting Polymer-Coated Microneedles for Skin Sampling.
Mokhtar, Siti Musliha Ajmal; Derrick-Roberts, Ainslie L K; Evans, Drew R; Strudwick, Xanthe L.
Afiliación
  • Mokhtar SMA; Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
  • Derrick-Roberts ALK; College of Engineering, Universiti Teknologi MARA, Johor Branch, Pasir Gudang Campus, Masai, Johor 81750, Malaysia.
  • Evans DR; Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
  • Strudwick XL; Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
ACS Appl Bio Mater ; 6(11): 4662-4671, 2023 11 20.
Article en En | MEDLINE | ID: mdl-37902811
Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity. Though CPs are reported to work safely in the body, their biocompatibility in the skin has been insufficiently investigated. Furthermore, during electrical biasing of CPs, they undergo reduction or oxidation, which in practical terms leads to release/exchange of ions, which could pose biological risks. This work investigates the viability and proliferation of skin cells upon exposure to an electrochemically biased MN pair comprising two differently doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) polymers that have been designed for skin sampling use. The impact of biasing on human keratinocytes and dermal fibroblasts was determined at different initial cell seeding densities and incubation periods. Indirect testing was employed, whereby the culture media was first exposed to PEDOTs prior to the addition of this extract to cells. In all conditions, both unbiased and biased PEDOT extracts showed no cytotoxicity, but the viability and proliferation of cells cultured at a low cell seeding density were lower than those of the control after 48 h of incubation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Queratinocitos Límite: Humans Idioma: En Revista: ACS Appl Bio Mater Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Queratinocitos Límite: Humans Idioma: En Revista: ACS Appl Bio Mater Año: 2023 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Estados Unidos