Your browser doesn't support javascript.
loading
Low infrared emissivity and broadband wide-angle microwave absorption integrated bi-functional camouflage metamaterial with a hexagonal patch based metasurface superstrate.
Opt Express ; 31(24): 40630-40645, 2023 Nov 20.
Article en En | MEDLINE | ID: mdl-38041358
This work proposed and demonstrated a bi-functional metamaterial to implement the multispectral camouflage in infrared and microwave bands. Aiming at integrating broadband, wide-angle and low infrared emissivity into one structure, the bi-functional structure is made up of three metasurface layers with different functions. Specifically, a metasurface superstrate based on hexagonal metallic patch was deployed to achieve a low infrared emissivity and a high transmittance of microwave simultaneously. In the framework of equivalent circuit model, the bi-functional structure was designed and optimized. A dielectric transition layer was introduced into the structure to obtain better microwave absorption performances. A sample of such structure was prepared based on optimized geometric parameters and tested. The simulated and measured results indicate that the novel hexagonal patch metasurface superstrate significantly reduces infrared emissivity and the measured emissivity of the structure is about 0.144 in 8-14µm infrared band. Meanwhile, the multilayered structure has a broadband absorption band from 2.32 GHz to 24.8 GHz with 7  mm thickness and is equipped with good angular stability under oblique incidence. In general, the method and specific design proposed in this work will benefit utilizing metasurface to implement bi-functional microwave and infrared camouflage materials with outstanding performances, which are promising for extensive applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos