Your browser doesn't support javascript.
loading
Pudilan Keyanning mouthwash inhibits dextran-dependent aggregation and biofilm organization of Streptococcus mutans.
Ren, Shirui; Cheng, Yiting; Deng, Yalan; Xia, Mengying; Yang, Yingming; Lei, Lei; Hu, Tao.
Afiliación
  • Ren S; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
  • Cheng Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
  • Deng Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
  • Xia M; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
  • Yang Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
  • Lei L; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
  • Hu T; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610
J Appl Microbiol ; 134(12)2023 Dec 01.
Article en En | MEDLINE | ID: mdl-38086612
AIMS: This research aimed to investigate the inhibitory effects of Pudilan mouthwash (PDL) on Streptococcus mutans (S. mutans) biofilms and identify its chemical components. METHODS AND RESULTS: The impacts of 100% concentrated PDL on S. mutans biofilm were detected by colony-forming unit (CFU) assays, crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and quantitative real-time PCR (qRT‒PCR). The biocompatibility with human gingival fibroblasts (HGFs) was evaluated by Cell-Counting-Kit-8 (CCK-8) assay. And chemical components were identified by UPLC-HRMS. PBS and 0.12% chlorhexidine were used as negative and positive controls, respectively. Results indicate early 8-h S. mutans biofilms are sensitive to PDL. Additionally, it leads to a decrease in bacterial activities and dextran-dependent aggregation in 24-h S. mutans biofilms. PDL significantly downregulates the gene expression of gtfB/C/D and smc. And 114 components are identified. CONCLUSIONS: PDL has an inhibitory effect on S. mutans and favorable biocompatibility. It has potential to be exploited as a novel anti-biofilm agent.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Streptococcus mutans / Antisépticos Bucales Límite: Humans Idioma: En Revista: J Appl Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Streptococcus mutans / Antisépticos Bucales Límite: Humans Idioma: En Revista: J Appl Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido