Your browser doesn't support javascript.
loading
Sensor location influences the associations between IMU and motion capture measurements of impact landing in healthy male and female runners at multiple running speeds.
Doyle, Eoin W; Doyle, Tim L A; Bonacci, Jason; Fuller, Joel T.
Afiliación
  • Doyle EW; Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia.
  • Doyle TLA; Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia.
  • Bonacci J; Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.
  • Fuller JT; Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia.
Sports Biomech ; : 1-15, 2024 Jan 08.
Article en En | MEDLINE | ID: mdl-38190247
ABSTRACT
This study investigated the relationships between inertial measurement unit (IMU) acceleration at multiple body locations and 3D motion capture impact landing measures in runners. Thirty healthy runners ran on an instrumented treadmill at five running speeds (9-17 km/h) during 3D motion capture. Axial and resultant acceleration were collected from IMUs at the distal and proximal tibia, distal femur and sacrum. Relationships between peak acceleration from each IMU location and patellofemoral joint (PFJ) peak force and loading rate, impact peak and instantaneous vertical loading rate (IVLR) were investigated using linear mixed models. Acceleration was positively related to IVLR at all lower limb locations (p < 0.01). Models predicted a 1.9-3.2 g peak acceleration change at the tibia and distal femur, corresponding with a 10% IVLR change. Impact peak was positively related to acceleration at the distal femur only (p < 0.01). PFJ peak force was positively related to acceleration at the distal (p = 0.03) and proximal tibia (p = 0.03). PFJ loading rate was positively related to the tibia and femur acceleration in males only (p < 0.01). These findings suggest multiple IMU lower limb locations are viable for measuring peak acceleration during running as a meaningful indicator of IVLR.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sports Biomech Asunto de la revista: MEDICINA ESPORTIVA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sports Biomech Asunto de la revista: MEDICINA ESPORTIVA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido