Your browser doesn't support javascript.
loading
High-Throughput Prediction of the Thermal and Electronic Transport Properties of Large Physical and Chemical Spaces Accelerated by Machine Learning: Charting the ZT of Binary Skutterudites.
Santana-Andreo, Julia; Márquez, Antonio M; Plata, Jose J; Blancas, Ernesto J; González-Sánchez, José-Luis; Sanz, Javier Fdez; Nath, Pinku.
Afiliación
  • Santana-Andreo J; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Márquez AM; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Plata JJ; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Blancas EJ; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • González-Sánchez JL; Department of Computer Systems Engineering and Telematics, University of Extremadura, School of Technology, Cáceres 10003, Extremadura, Spain.
  • Sanz JF; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Nath P; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-0808, Japan.
ACS Appl Mater Interfaces ; 16(4): 4606-4617, 2024 Jan 31.
Article en En | MEDLINE | ID: mdl-38253557
ABSTRACT
Thermal and electronic transport properties are the keys to many technological applications of materials. Thermoelectric, TE, materials can be considered a singular case in which not only one but three different transport properties are combined to describe their performance through their TE figure of merit, ZT. Despite the availability of high-throughput experimental techniques, synthesizing, characterizing, and measuring the properties of samples with numerous variables affecting ZT are not a cost- or time-efficient approach to lead this strategy. The significance of computational materials science in discovering new TE materials has been running in parallel to the development of new frameworks and methodologies to compute the electron and thermal transport properties linked to ZT. Nevertheless, the trade-off between computational cost and accuracy has hindered the reliable prediction of TE performance for large chemical spaces. In this work, we present for the first time the combination of new ab initio methodologies to predict transport properties with machine learning and a high-throughput framework to establish a solid foundation for the accurate prediction of thermal and electron transport properties. This strategy is applied to a whole family of materials, binary skutterudites, which are well-known as good TE candidates. Following this methodology, it is possible not only to connect ZT with the experimental synthetic (carrier concentration and grain size) and operando (temperature) variables but also to understand the physical and chemical phenomena that act as driving forces in the maximization of ZT for p-type and n-type binary skutterudites.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos