Two-Dimensional Transition Metal Boron Cluster Compounds (MBnenes) with Strain-Independent Room-Temperature Magnetism.
J Phys Chem Lett
; 15(4): 1070-1078, 2024 Feb 01.
Article
en En
| MEDLINE
| ID: mdl-38261575
ABSTRACT
Two-dimensional (2D) metal borides (MBenes) with unique electronic structures and physicochemical properties hold great promise for various applications. Given the abundance of boron clusters, we proposed employing them as structural motifs to design 2D transition metal boron cluster compounds (MBnenes), an extension of MBenes. Herein, we have designed three stable MBnenes (M4(B12)2, M = Mn, Fe, Co) based on B12 clusters and investigated their electronic and magnetic properties using first-principles calculations. Mn4(B12)2 and Co4(B12)2 are semiconductors, while Fe4(B12)2 exhibits metallic behavior. The unique structure in MBnenes allows the coexistence of direct exchange interactions between adjacent metal atoms and indirect exchange interactions mediated by the clusters, endowing them with a Néel temperature (TN) up to 772 K. Moreover, both Mn4(B12)2 and Fe4(B12)2 showcase strain-independent room-temperature magnetism, making them potential candidates for spintronics applications. The MBnenes family provides a fresh avenue for the design of 2D materials featuring unique structures and excellent physicochemical properties.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Chem Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos