Your browser doesn't support javascript.
loading
Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure.
Cone, Ian; Clopath, Claudia.
Afiliación
  • Cone I; Department of Bioengineering, Imperial College London, London, UK. i.cone@imperial.ac.uk.
  • Clopath C; Department of Bioengineering, Imperial College London, London, UK.
Nat Commun ; 15(1): 687, 2024 Jan 23.
Article en En | MEDLINE | ID: mdl-38263408
ABSTRACT
To successfully learn real-life behavioral tasks, animals must pair actions or decisions to the task's complex structure, which can depend on abstract combinations of sensory stimuli and internal logic. The hippocampus is known to develop representations of this complex structure, forming a so-called "cognitive map". However, the precise biophysical mechanisms driving the emergence of task-relevant maps at the population level remain unclear. We propose a model in which plateau-based learning at the single cell level, combined with reinforcement learning in an agent, leads to latent representational structures codependently evolving with behavior in a task-specific manner. In agreement with recent experimental data, we show that the model successfully develops latent structures essential for task-solving (cue-dependent "splitters") while excluding irrelevant ones. Finally, our model makes testable predictions concerning the co-dependent interactions between split representations and split behavioral policy during their evolution.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipocampo / Aprendizaje Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipocampo / Aprendizaje Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido