Your browser doesn't support javascript.
loading
[Effect of Using Hydrogen Peroxide for Periodic Disinfection Combined With Continuous Disinfection to Control Contamination in Dental Unit Waterline]. / 过氧化氢定期消毒结合持续消毒对口腔综合治疗台水路污染控制的有效性观察.
Chang, Jing; Dang, Yun; Wang, Chunli; Li, Xiue.
Afiliación
  • Chang J; · ( 100081) Fifth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
  • Dang Y; · ( 100081) Fifth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
  • Wang C; · ( 100081) Fifth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
  • Li X; · ( 100081) Fifth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 217-223, 2024 Jan 20.
Article en Zh | MEDLINE | ID: mdl-38322511
ABSTRACT

Objective:

To observe the effect of using hydrogen peroxide in periodic disinfection combining with continuous disinfection of dental unit waterlines and to provide references for the selection of waterway disinfection measures.

Methods:

A total of 4 dental units in a hospital of stomatology were selected through convenience sampling. The dental unit waterlines received periodic disinfection once every 4 weeks in addition to continuous disinfection (When the dental units were not used for more than 3 days, an additional periodic disinfection would be performed.). Periodic disinfection referred to filling up the waterlines with a disinfectant solution (1.4% hydrogen peroxide) by using the waterline disinfection device that came with the dental unit, immersing for 24 hours, and then emptying out the disinfectant solution. Continuous disinfection referred to using hydrogen peroxide at a concentration of 0.014% as dental treatment water and using it to flush the waterlines for 2 minutes before any dental treatment in the morning and to flush the waterlines for 30 seconds after each dental treatment. The study lasted for 25 weeks, with periodic disinfection being performed for 7 times and continuous disinfection carried out for the rest of the dental treatment time. During the 25 weeks, water samples were collected from air/water syringes and high-speed handpieces. Then, the water samples were incubated and the bacterial concentration and the qualification rates were calculated accordingly. When the bacterial concentration≤100 CFU/ mL, the water samples were considered to be qualified. Waterline tubes of 1 cm were collected before and after the 25 weeks of disinfection with hydrogen peroxide. Biofilms in the waterline tube were observed under scanning electron microscope.

Results:

A total of 352 water samples were collected. Eight water samples were collected before disinfection with hydrogen peroxide, with the median of bacterial concentration being 3140 CFU/mL. On the first day of disinfection with hydrogen peroxide, the median bacterial concentration in dental treatment water was 7.5 CFU/mL. There was a significant difference between the bacterial concentration of the water samples before the disinfection and that after the disinfection (P=0.012). A total of 344 water samples were collected after the disinfection, with the median bacterial concentrations for air/water syringes and high-speed handpieces being 11 CFU/mL and 11CFU/mL and the qualified rates being 83.7% and 82.0%, respectively. There was no significant difference in bacterial concentration or the qualification rates. During week 1 through week 9 of the disinfection, the qualification rates of the dental treatment water always exceeded 80% in 8 weeks, with week 3 being the exception. In the two four-week disinfection periods of week 14 through week 17 and week 18 through week 21, the qualification rate was maintained at above 80% for only the first two weeks and started to decrease from the third week. Biofilm morphology was observed under scanning electron microscope. Before the disinfection, the biofilm was found to be a dense structure and the mixture of a large number of bacteria. After 25 weeks of the disinfection, the biofilm structure appeared to be loose and did not show consistent characteristics of a large number of bacteria retained.

Conclusion:

Periodic disinfection combined with continuous disinfection using hydrogen peroxide can effectively control contamination in dental unit waterlines. But the cycles of periodic disinfection and the concentration of hydrogen peroxide for continuous disinfection should be further discussed according to the actual clinical situation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Desinfectantes / Peróxido de Hidrógeno Idioma: Zh Revista: Sichuan Da Xue Xue Bao Yi Xue Ban Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Desinfectantes / Peróxido de Hidrógeno Idioma: Zh Revista: Sichuan Da Xue Xue Bao Yi Xue Ban Año: 2024 Tipo del documento: Article País de afiliación: China